
ESc 101: Fundamentals of Computing

Lecture 36-37

Apr 8 & 12, 2010

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 1 / 20



Truly Dynamic Space

In many applications, one needs to maintain a collection of data
elements from which insertions and deletions are made frequently.

For example, maintaining a list of people entering the swimming pool
in a particular slot.

In such a situation, even during execution, one cannot predict the size
of array required to store all the data.

To maintain such dynamic collection, we use linked lists.

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 3 / 20



Linked Lists

Each element, called cell, of a linked list stores some data, and also
contains a pointer to the next element.

The cells are not stored contiguously in the memory, and so cannot
be accessed by indexing.

This makes the access to lists slower than arrays.

There are ways of making the access faster, but we will not go into
that.

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 4 / 20



Defining a List

struct list {

int element; // stores data

struct list *next; // pointer to the next cell

}

typedef struct list *List; // defines a new type

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 5 / 20



The NULL Pointer

To represent the case when a pointer does not point to a useful
memory location, it is set to value NULL.

It is pre-defined to be the memory address 0.

It is very useful to detect the end of the list: the pointer to the next
element is NULL.

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 6 / 20



Inserting in a List

/* Inserts a number in the beginning of list L, and returns

* a pointer to the inserted cell. L points to the first

* cell of the list.

*/

List insert_list(int number, List L)

{

List e;

e = (List) malloc(sizeof(struct list)); // allocate space

e->element = number; // store the element

e->next = L; // points to the first cell

return e; // new head of the list

}

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 7 / 20



Searching in a List

/* Searches for occurrence of a number in the list L.

* Returns a pointer to that cell if it exists.

* Returns NULL otherwise.

*/

List search_list(int number, List L)

{

if (L == NULL) // empty list

return L;

if (L->element == number) // first cell matches!

return L;

// search remaining list

return search_list(number, L->next);

}

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 8 / 20



Deleting Number from List

/* Deletes the number from the list L if it exists.

* Returns the head of the list.

*/

List delete_list(int number, List L)

{

List x, y;

x = search_list(number, L); // look for the number

if (x == NULL) // number does not exist

return L;

if (x == L) { // first cell to be deleted!

L = L->next; // move the head

free(x);

return L;

}
Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 9 / 20



Deleting Number from List

// find the cell before the one to be deleted

for (y = L; y->next != x; y = y->next);

y->next = x->next; // jump over x!

free(x); // delete x

return L;

}

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 10 / 20



Problems with delete list()

After searching for the cell to be deleted, the function has to make
another pass to find the cell just before it.

I Without the previous cell, the cell to be deleted cannot be properly
removed from the list.

The function does not return any information on whether the number
is not found in the list.

I This is because it has to return a pointer to the head of the list since it
may change.

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 11 / 20



Fixing the Problems

These problems can be fixed easily by maintaining a dummy cell at
the head of the list that does not store any number.

This cell is therefore never deleted, and so the pointer to the head
never changes.

In search list(), we return a pointer not to the cell containing the
number searched, but to the cell just before it.

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 12 / 20



Inserting in a List Again

/* Inserts a number in the beginning of list L. L points to

* the first * cell of the list - a dummy cell storing the

* number of cells in the list.

*/

void insert_list(int number, List L)

{

List e;

e = (List) malloc(sizeof(struct list)); // allocate space

e->element = number; // store the element

e->next = L->next; // e points to the first cell

L->next = e; // reassign the first cell

(L->element)++; // increment the count

}

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 13 / 20



Searching in a List Again

/* Searches for occurrence of a number in the list L.

* Returns a pointer to the cell just before the one

* containing the number, if it exists.

* Returns NULL otherwise.

*/

List search_list(int number, List L)

{

if (L->next == NULL) // number does not exist

return NULL;

if ((L->next)->element == number) // found it!

return L;

// search remaining list

return search_list(number, L->next);

}

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 14 / 20



Deleting Number from List Again

/* Deletes the number from the list L if it exists.

* Returns -1 if number is not found.

*/

int delete_list(int number, List L)

{

List x, y;

x = search_list(number, L); // look for the number

if (x == NULL) // number does not exist

return -1;

y = x->next; // cell to be deleted

x->next = y->next; // jump over y!

(L->element)--; // reduce the count

free(y); // delete y

return 1;

}
Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 15 / 20



Using Lists

int main()

{

List L; // empty list

int number;

char op;

// create dummy cell

L = (List) malloc(sizeof(struct list));

L->next = NULL;

L->element = 0;

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 16 / 20



Using Lists

while (1) {

scanf("%d %c", &number, &op);

if (op == ’i’)

insert_list(number, L);

else if (op == ’d’)

delete_list(number, L);

else { // search

if (search_list(number, L) == NULL)

// does not exist

printf("Number %d does not exist\n", number);

else

printf("Number %d exists\n", number);

}

}

}

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 17 / 20



Commands

while: A loop construct.

do-while: Another loop.

continue: Stops the current iteration of a loop and starts the next
iteration.

switch: Alternative to if-else in some situations.

goto: Jumps to a specified location of the program.

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 19 / 20



Advanced Features

static variables: Scope of these variables is different.

bitwise operations: Work on the individual bits of variables.

unions: Special types that can hold different sized and type of data.

macros: More commands beginning with #.

low-level I/O: Accessing files byte-by-byte.

variable number of parameters: Functions can have a variable
number of parameters like scanf() and printf().

passing functions as arguments: Pointers to functions can be
passed as arguments to other functions!

From the next class, we start on Mathematica!

Lecture 36-37 () ESc 101 Apr 8 & 12, 2010 20 / 20


	Linked Lists
	Parts of C Not Covered

